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The Variational Treatment of Thick Interacting Inductive Irises

TULLIO E. ROZZI

Abstract—The problem of two thick interacting inductive irises in
waveguide is treated with a variational approach.

Using the appropriate Green’s functions in the continuity equa-
tions of the transverse magnetic fields yields two coupled integral
equations for the magnetic currents on the apertures. Solving one
equation by Fourier expansion and introducing in the remaining
equation, a variational expression for the driving-point admittance is
obtained. This is treated with a Rayleigh~Ritz procedure and matrix
methods, avoiding the explicit computation of field amplitudes.

The analysis is carried out in terms of an eigenmode expansion,
as well as in terms of an expansion a la Schwinger on the aperture
and the features of the two methods are contrasted.

In spite of its somewhat greater mathematical complexity, the
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latter generally provides a superior solution for a given order of the
trial field.

In both cases the solutions are very accurate, uniformly con-
vergent to their common limit value, and require manipulations with
small-order matrices only. The agreement with the experiment is
excellent.

I. INTRODUCTION

HE PROBLEM of the inductive iris in waveguide, one

l of the geometrically simplest and most commonly used

configurations, admits, nonetheless, no general analyt-

ical solution. On the other hand, the variational approach to

this problem can be developed analytically to such an extent

as to yield answers that can be as accurate as prescribed and,
in the qllxasistatic limit, can even be cast in closed form.
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A good discussion of the variational solution of the prob-
lems of the infinitely thin iris under TE;o incidence, originally
due to Schwinger, can be found in a standard textbook by
Collin [1].

This solution has been extended to the general case of
arbitrary TE,o incidence by Palais [2]. The same author has
also discussed the effect of interaction between infinitely thin
irises [3]. The thick (isolated) irisis also treated in [1].

The simultaneous presence of finite thickness and inter-
action between neighboring irises has been discussed in a
previous contribution [4]. This utilizes Schwinger’s form for
the susceptance of an infinitely thin iris, parallel transmis-
sion lines for the iris eigenmodes, and ideal transformers at
the interfaces. The transformer ratios are expressible as linear
combinations of the amplitudes of two, independently assumed,
trial fields at the interfaces. Field amplitudes are then deter-
mined by searching for the stationary point of the driving-
point admittance of the even/odd-mode equivalent network.

1t is well known in fluid dynamics that flow occurs with-
out turbulence at the junction of two ducts having different
cross sections when these can be mathematically related by
means of conformal mapping. In the boundary-value problem
posed by the iris, a somewhat analogous situation arises if one
utilizes an orthogonal set on the iris aperture introduced by
Schwinger [1], [5]. These and the x derivatives of the guide
eigenmodes satisfy compatible boundary conditions on the
aperture edge, and the latter set can be expressed as a finite
expansion in terms of the first set. The transformation matrix
from the one set to the other is lower triangular and well
conditioned.

In order to take account of propagation in the iris (thick-
ness effect), it is, however, necessary to transform back to the
representation of the iris eigenmodes, i.e., in network terms,
ideal transformers must be introduced at the interfaces. The
actual aperture eigenmodes, on the other hand, are the nat-
ural set for describing propagation on the thick iris, but their
boundary conditions are incompatible with those of the guide
modes. These considerations apply to the general case of
transverse discontinuities of the aperture type. The aperture
eigenmodes are just a choice of an orthonormal set on the
aperture and as such, in general, not an optimum one, from
the point of view of “bringing the wave” into the aperture.
The question arises, therefore, whether an expansion i la
Schwinger, in spite of the more complex representation associ-
ated with it in the case of finite thickness, provides a more
efficient solution.

The purpose of this paper is to present the complete vari-
ational solution of the problem of thick, interacting, induc-
tive irises starting from a rigorous integral-equation formula-
tion.

This results in a pair of coupled integral equations: the
first one for the driving-point admittance of the even/odd-
mode equivalent circuit and the second one relating the two
magnetic current distributions occurring at the two interfaces
of the iris.

When the second equation is solved by Fourier expansion
and the resulting linear relationship between the two distri-
butions is introduced into the first equation, the latter can be
reduced to a modified symmetric Rayleigh quotient contain-
ing the Fourier amplitudes of only one of the distributions.

The stationary value of the quotient is then found by alge-
braic methods avoiding the explicit calculation of modal
amplitudes. The analysis is carried out by means of an iris
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eigenmode expansion (Section II), as well as by an expansion
in Schwinger’s functions (Section II1), and the characteristics
of the two solutions are investigated. In Section IV, numerical
results obtained with both methods are compared with those
obtained with the previous method and with the experiment.
Only TE;¢ incidence will be explicitly considered. The follow-
ing results can be extended to general TE,o incidence, as
shown in [2] for the infinitely thin iris. The case of the capac-
itive iris can be treated on parallel lines.

II. TaE INTEGRAL-EQUATION FORMULATION
AND THE EIGENMODE EXPANSION

The geometry under study is depicted in Fig. 1. Making
use of the mirror symmetry with respect to the plane =14/,
we shall split the problem into an even and odd part by locat-
ing a magnetic and an electric wall, respectively, at the plane
of symmetry (Fig. 2).

We can solve the field problem separately in each region
of the left-half space (z=¢-1) by applying a well-known field
equivalence principle [6].

The two sides of the aperture S at =0 can be considered
closed by an electric wall superimposed by a magnetic current
distribution M= 3XE and — M, respectively, 2 being the unit
normal in the positive g direction and E the electric field at the
aperture location. Similarly, the aperture S’ can be closed by
an electric wall and the magnetic current distribution
M'= 2XE’ on the left-hand side and — M’ on the right-hand
side. This equivalence is depicted in Fig. 3. The total (x-
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directed) transverse magnetic field in region 1, e.g., incident
field plus field radiated by the magnetic current at z=0, can
be expressed as

H\(r) = L) cos s+ | M@)-Gutrs )
N

2w
o1(x) = 1/— sin — (1)
a a

where I is the amplitude of the current carried by the funda-
mental mode (TEiq). The symmetry of the discontinuity in
the y direction causes only TE,, modes to be excited. The
reactance dyadic in region 1, at the location 2’ =0, is

2T  nwr  onm
Gi(z,2;4") = 2, —-sin— x sin— &’ -cosh Thz. (2)
n>1 dB a a

If the iris is symmetric, the sum is restricted to # odd. All
characteristic admittances have been normalized to that of
the fundamental mode (I', is real for >>1 and T, =3B).

In region 2, the field is that radiated by the magnetic cur-
rents —M and M’ in a resonator of length ¢ and width d.
Equivalently, the total field in region 2 is the superposition
of the fields present in the two semi-infinite regions ¢ >z > — »
and 0<g<+ =,

2X2VXI I

Hl =HQ+H2,, onS (7&)

and

Hz + Hz’ = H;;, on S,. (7b)

Inserting in the above expressions the field expansions (1),

(3), (5), and (6), we have
Ih(e, 0) = —j{ [ 16165, 059) + Gute, 030010 v

o+ f M%) G (x, 05 ") dx’} (82)

and

f MGz, t; &) do’ — M ()G (x, t; 2')dx’
s s

= M'(2') - Ga(x, t; &) - do’.

S

(8b)

This is a system of two coupled integral equations for the yet
unknown functions M(x) and M'(x).

From (8a) we can easily derive the following variational
expression for the driving-point admittance of the one-port

[1]:

_ijf {M(x) [Gi(, 0; &) +Galz, 0; &) M (x') — M’ (x) - Gy’ (, 0; x')M(x')} o dad

= —]bo=

(27)? 4

The transverse field H; radiated by —M in regioﬂ 2 is
obtained by a formula analogous to (1) by setting I =0, i.e.,

Hy(x, 2) = —jf M) Go(x, z; ') -dx’ 3)
8

where the appropriate Green’s function now is
G2(xa z; x,)
® Ym | W a—d\ . mr a—d
=3 —sin—oI/x — sin—\( &’ —
a1 4B d 2 d 2
cosh ym(z — £)

4

sinh vyt @
Similarly, the field H,' radiated by M’ in region 2 is expressed
as

Hy(x,3) =7 M (2 -Gy (x, 3; &) - dx’. (5)
SI
The transverse magnetic field in region 3 is given by
Hi(x,2) =7 M (&) Gs(w, z; &) - do’. (6)
Sl

All transverse magnetic fields have now been written in
terms of two unknown magnetic current distributions:
M=2XE located at S and M'=2XE’' located at S’ (e.g., in
terms of the electric field distributions at the interfaces). Two
integral equations for these quantities are obtained by apply-
ing the conditions of continuity of the transverse magnetic
fields at .S and S’. These are

9

[f M(x) () doc]2

Separating variables and introducing the explicit form of the
Green's functions, (8b) is rewritten as

i %-cseh 'ymt-< f Uz M (") dx’) Y (2)

m=1

- 5 2 cotnnut(( [ w0 @ )4t

m=1

0 I4
n

= P? ( J e -a@) dx’) $u()

2
on(x) = 4/— sinn—qrx
a a

Ym(x) = sinﬂ<x _4- d>
d 2

+ (10)

where

, tanh I,0
T, = rn{
coth T,/

We shall limit our attention to the symmetric iris, since the
asymmetric case presents no new feature, and therefore we
shall take for M(x) and 3'(x) an expansion in terms of the
aperture eigenmodes of odd order:

M(x) = 2 M)

m=1

(11a)
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We introduce now in the right-hand side of (10) the expansion

Gulx) = g Prnifrm (%) (12)

72

with

nr
sin— (¢ — d)
2mmw 2a

Pon = 13
" d <m1r )2 (mr>2 (13)
d a
and we equate Fourier amplitudes. Some algebraic manipula-

tion yields the following linear relationship between the ampli-
tude vectors & and wu:

A=+ sy Blu=Tu (14)
where
¢ = diag (cosh v, cosh yst, « - - )
s = diag (sinh vy, sinh v3t, « « - )
v = diag (vi,vs, -+ *)
4\ & 4 -
B, = (—) > I'PniP.; orB= <———>P1"P 1
ad n=1 ad
. tan Bl tanh T'sl
I’ = diag (8 » T ro )
cot B! coth T3l

The series appearing in the matrix elements B;;’ converges,
but neither uniformly everywhere nor very rapidly. Poles
occur whenever m/d=n/a, i.e., higher order iris and iris guide
modes “enter in resonance.” This has no intrinsic physical
meaning, but is a consequence of the fact that the eigenmode
expansion is essentially not uniformly convergent at these
points.

The transformation of the series into one which converges
uniformly and more rapidly is described elsewhere [7].

The continuity equation (14) has the network interpreta-
tion of the (matrix) voltage transfer ratio of alength of trans-
mission line terminated by a shunt admittance, which is illus-
trated in Fig. 4. This is indeed the relationship between the
voltages at the location of the transformers in the equivalent
network representation of [4]. At the same time, this shows
the connection between that approach and the more general
solution presented here.

We go back now to expression (9) for the driving-point
admittance and compute the various constituent terms.

1 Here, the tilde denotes transposition.

85

The denominator can be written as

() OE ) - irar

After a slight manipulation, the first term in the numerator
can be written as

<%> *(B + D) (16)

where
4 o0
Bi] = _‘Z Pan in
ad n==3
D = diag (v, coth vit, yscoth yst, - -+ ) = v-c-s~L

Similarly, the second term in the numerator of (9) becomes

2 2
—- Z Ym €SCh (Ymd) Nty = —2D'n an
aB aB

where
D' = diag (y1, csch v, ys cschyst, -+ + ) = ys7L

Collecting the expressions (15)-(17) we finally obtain
- ad 43 . -
bo(?») =a|l B+ Z (D - D'T—l)] l/—;lP*lP*ﬁ\.
a

= iUQ\,/iPﬂP*lQ\v- (18)

The matrix Py Py is real, symmetric, and of rank one.
The matrix U is real, symmetric, and nonsingular. The sta-
tionary value of the driving-point susceptance bo(do) is char-
acterized by the equation

[bo(o‘)(ip*1j)*13») — 5\,U,’A,] =

with 8bo/O\|xan, =0, or

boP*1P*17\.o = Ulo. (19)

If 20=1/bhg and since U is nonsingular, (19) can be reduced to
the eigenvalue equation

U- 1P*1P*13».0 = Zgho. (20)

Since U~ 1Py Py is of rank one, there will be only one non-
zero eigenvalue satisfving (20). This is the sought stationary
value of the reactance.

From the invariance of the trace of U~1Py Py, it follows
that the value of z, is given by

fr (U_IP*1P*1) = P*lU—IP*]_. (21)

The usefulness of this result lies in the fact that it gives an
explicit value for the reactance, avoiding the calculation of
modal amplitudes. If required, these can easily be computed
from (20) and (14).

1I1. SCHWINGER'S REPRESENTATION

The aperture fields (11) have been taken as combinations
of actual aperture eigenmodes.

It is interesting to compare the solution with that ob-
tained by using the orthogonal set of functions over the aper-
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ture that was originally introduced by Schwinger [5]. For
this purpose, we take M (x) and M’(x) such that

M@ _ F(o(x)) = i pr €05 ko (22a)
dM’(OC) _ F’(@(x)) - zN: or Cos B0 (22b)

k=1

where cos (wx/a) =sin (wd/2a):cos §=a cos § and the nota-
tion is similar to that used in {4]. The above definitions imply
a conformal mapping of the interval 0 <x < in the interval
a—d/2<x<a-+d/2, corresponding to 0 < <m. The existence
of the mapping involves better modal matching to the guide
eigenmodes than that obtainable with the iris eigenmodes
chosen as a basis. In order to describe the propagation on the
iris, however, we shall have to go back to the latter set.

In the following, therefore, we shall need the expansions

m a—d kil
cos l(x — ) = Z Ampy cos 10 (23)
d 2 )
with
w2 mr a—d
Apy = (4/7r)f cos 16-cos ———(x - >d0
o d 2
and
nrx LG
cos g >~ Qur cos 70 (24)
a r=1

with Qyr given explicitly in the Appendix. It is worth empha-
sizing that the existence of the finife expansion (24) stems from
the fact that the two sets cos (nmw/a)x and cos #9 satisfy com-
parible boundary conditions on the iris edge. This is not the
case for the sets sin (zr/a)x and sin (n7/d) - (x— (a—d/2)), so
that the expansion of one set in terms of the other one is
intrinsically infinite. This is borne out by the fact that the
transformation matrix (13) can easily become ill-conditioned.
In fact, for m/n=d/a or, in any case, if m and #n are suffi-
ciently large, we have m?—(d/a)*n?~m?—k?* with £ integer
so that

1 1
m+k m—k

Ppn®

This matrix is clearly related to the matrix Huo=1/(m+k—1).
However, this is the so-called “Hilbert matrix,” which is a
well-known pathological case of ill-conditioning in numerical
analysis [8].

The relationship between (11) and (22) is found from the
identity

4/—2 mr mw( a—d>
— —— A €OS —{ & —
d d 2

d
a mrw 2
Z AmAmp COS k07 -(2 (25)

ie.,

TVflAm é WVEAA
*=iV 4 VL 2F had

where A=diag (m) and m=1,3, - - -, N.
In the new representation, (14) becomes

d&E Ym J
- — csch (yai) 2 AmkAmi i

A =1 k=1
d © Y N
=~ > = coth (ynt) 22 Amidmk o
@ ey M2 k=1
© Pn,
+ Z " QnrQrio (26)
n=max (i,k) 7
that is,
d . d _
- AA DA 4o = <— AATIDAIA + C’) 8
a a
or
d d
~E’9=<—E+C' é 27
a a

where D and D’ have already been defined, E and E’ are
defined in (27), and

0

, T'n A
Chu= 22 gy QniQnj = (QATITYATIQ) . (28)
n=max (%)
A rearrangement of this series is given in [4, eq. (5)].
From (27), the linear relationship between the N-dimen-

sional vectors g and ¢ is obtained:

o = Xa. (29)

When N—w, 4—47t and

X = AA(c + sy 1B)A'A = AATA'A (30)
is the result of a similar transformation on T. As a conse-
quence of this approach, the matrix relationship between the
¢ and ¢ vectors is more complicated than (14), involving the
numerical summation of an additional set of infinite series,
However, the series occurring in the matrix elements of C’
have convergence properties superior to those of B’. Further-
more, due to the lower-triangular form of the matrix T in the
expansion (24), the denominator in the expression analogous
to the modified Rayleigh quotient (17) reduces to a scalar
independent of g.

The network interpretation of the transformation (30) is
to introduce at the location of the discontinuity between the
guide and the iris an intermediate set of multiwinding ideal
transformers.

In terms of the new representation, the expression for the
driving-point susceptance becomes

ig,[c + (S) (E — E’X‘l)‘J a=73Yp=9q (31)

a?B
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where p=(1, 03, - - - )=(1, #) and

nw

n

1 i o
Ci = |:'.‘ - a25ii:| it 2 = 0ninj (32)

7 n=max (¢,) n

Matrix (32) represents the half of the (matrix) susceptance of
an infinitely thin isolated iris. By partitioning ¥ as

where Y1 is a number, Y5 is a (1 X N—1)-matrix, and Yy is
a (N—1) X(N—1)-matrix, the quadratic form (31) can be
written:

gw) = Vi1 + 2Y10u + uVouu.
Its stationary value ¢o, obtained when Yio= —goVs, is

go= Y-+ Yiwo= Yy — ViuVes Vs (33)

As in Section II, we have been able to obtain a compact
expression for the susceptance, avoiding the explicit compu-
tation of field amplitudes. If required, these can be readily
obtained, in fact, § = (1, — V12 Yes1), and 6 follows from (29).

IV. NUMERICAL AND EXPERIMENTAL RESULTS

In order to compare the two methods discussed in Sections
II and III and to check the results against those obtained by
means of the previous approach [4], two computer programs
were developed. A waveguide cavity, defined by two identical
irises (two-element filter), was built as well. The cavity was
gold plated in order to minimize losses and the actual mea-
sured dimensions (in centimeters) were as follows:

a=1.067 £0.0020

d=0.45204+0.0010

£=0.0460 £ 0.0020

1=10.6535%0.0015.

guide width

iris aperture

iris thickness

distance between irises

The VSWR was computed with the three methods and mea-
sured over the range 22.5-23.5 GHz, encompassing the reso-
nance of the cavity. This occurred at 22.923 GHz.

The results are shown in Fig. 5, where the crosses are mea-
sured values.

Curve 4 in Fig. 5 was computed by the method previously
developed and by a modal expansion of three terms per aper-
ture; that is, four independent variables in the Rayleigh—
Ritz procedure. Results obtained with this method are con-
sistently in fairly good agreement with those obtained with
the more recent approach, apart from a slight systematic
deviation of the resonant frequency towards lower {requen-
cies.

Curve B was computed with the method of Section II
(fields expressed as eigenmode expansions) and a modal devel-
opment of ten modes in the aperture (N=2X10—1=19).
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TABLE I
RrsoNANT FREQUENCY (GHz)

Schwingerst function

number of eigenmode expansion

expansion -

terms
3 22.9460 22.8621
i 22,9325 22.8873
5 22.9255 22,8991
6 22.9214 22,9073
7 22.9188 22.9133
8 22.9169 22,9167
9 22.9156 22,9200
10 22,9146 22,9228
1 22,9140 22,9245

Curve C was computed with the method of Section III
(Schwinger representation and a modal development of the
same order). The values of the resonant frequency as a func-
tion of the number of modes for both methods are given in
Table I. Itis seen that in the two methods, the limit values are
approached from opposite directions.

All waveguide modes are taken into account in the matrix
elements of the guide dyadic in terms of the orthogonal set on
the aperture. Therefore, the solution depends only upon the
order of the expansion chosen for the trial field. The computed
values of the resonant frequency sensitivity for mechanical
tolerances, expressed in megacycles per second/micrometers,
were as follows:

Af/Aa >~ — 0.7
Af/Al~ — 1.7

Af/Ad >~ — 1.5
Af/ At~ 0.3.

Both limit values, extrapolated from Table I, lie within the
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range accounted for by tolerances, the difference between
them being 10 MHz.

Computation times for the three cases were in the ratio
A:B:C=20:8:3. The reduction of computing time realized
by either B or C, with respect to 4, is mainly due to replacing
the search for the stationary point of a nonlinear function of
many variables with the closed-form expression (21) or (33)
for the stationary value of the driving-point admittance.

The difference of computing time between B and C, in
spite of the larger number of matrix manipulations and the
summation of two sets of series involved in the latter method,
is due to the better modal matching in Schwinger’s represen-
tation.

A few computer results confirmed the expectation that
this method becomes increasingly attractive as either the iris
thickness decreases and/or the iris-to-iris distance decreases,
since in either case the interaction of higher order waveguide
and iris modes is enhanced.

In the limit of rather thick irises, the method of Section 11
appears to be competitive.

V. CoNcLUSIONS

Starting from a rigorous integral-equation formulation,
the variational solution was obtained to the problem of the
interacting, thick inductive iris using an eigenmode expansion
on the aperture, as well as an expansion 4 la Schwinger.

A comparison has been carried out between the two
methods and the equivalent-network/variational approach
presented previously. A precise two-element filter was made
and tested.

Numerical results obtained with both new methods show
improved agreement with the experiment.

In spite of not offering a diagonal representation for
propagation in the iris, an expansion 4 la Schwinger appears
to give definite computational advantages, especially for thin
(interacting) irises. Moreover, the nonphysical situation of
resonance between higher order guide and iris modes does not
arise in the latter approach.

The accuracy achieved with either method is such that the
uncertainty in predicting the electrical characteristics of the
thick interacting iris has been reduced to that arising from
the effect of mechanical tolerances.

APPENDIX

RECURSIVE FORMULAS OF THE Qux
COEFFICIENTS OF SECTION III

The coefficients Qi of the expansion (26)

nwx kid
cos — = 2, Qux cos k0,

a k=1

(n, k odd)
with

T
cos— = acosf = Qqcosé
a

can be obtained by means of a convenient recursive relation-
ship derived in the following.

Since
nTE T
cos — = T, (cos ——) = T, (a cos8)
a a
and
To(x) = (422 — 2)To(w) — Tru_u(x)
we set
> Oui cOs %0
k=<1
n—2 n—4
= (402c05?0 — 2)* > Qu5,4C08 k0 — D Qns;i; COS kO
k=1 k=1
n n—4
=a® Z Qr—2;5—2 cOs k6 - a? Z On2: k42
k=3 Fme-1

n—4

n—2
+ 2(a? — 1) D QOn_sgx cos kf — > Qu—s; COS FD.
k=1 k=1

Equating coefficients of cos &8, we obtain the recursive for-
mula sought:

Qnm = aan—Z;m—Z + a2Qn—2;m+2 + 2(a2 - I)Q"‘Z;m
- Qn—4;m

with
Qum = 0, for m > n.

This form, containing only quantities of the order of unity, is
more suitable for computation than an explicit polynomial
form in @, involving differences of products of large numerical
coefficients and large powers of @ with & <1.

A similar recursive form is easily deduced for the asym-
metric case (m and # even and odd).

ACKNOWLEDGMENT

The author wishes to thank G. de Vrij for developing the
two computer programs utilized in this investigation and for
performing the computations. He also wishes to thank J.
Timmers for performing the measurements and Prof. C. J.
Bouwkamp, Dr. A. Douglas, and Dr. W. Mecklenbriuker for
their interest in this work and various helpful discussions.

REFERENCES

[1] R. E. Collin, Field Theory of Guided Waves.
Hill, 1960, ch. 8.

[2] J. C. Palais, “A complete solution of the inductive iris with TEyg inci-
dence in rectangular waveguide,” IEEE Trans. Microwave Theory
Tech., vol. MTT-15, pp. 156-160, Mar, 1967.

[3] , “The inductive iris double discontinuity,” Appl. Sci. Res., pp.
61-76, Jan. 1969.

[4] T. B. Rozzi, “Equivalent network for interacting thick inductive
irises,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 323~
330, May 1972,

[8] J. Schwinger and D. Saxon, Discontinuities in Waveguides.
England: Gordon and Breach, 1968, p. 72.

[6] R. ¥. Harrington, Time Harmonic Electromagnetic Fields.
York: McGraw-Hill, 1964.

[7} T. E. Rozzi and G. de Vrij, “A series transformation for diaphragm-
type discontinuities in waveguide,” IEEE Trans. Microwave Theory
Tech. (Corresp.), vol. MTT-20, pp. 770-771, Nov. 1972.

[8] G. Forsythe and C. Moler, Computer Solutions of Linear Algebraic
Systems. Englewood Cliffs, N. J.: Prentice-Hall, 1967, ch. 19.

New York: McGraw-

London,

New




