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The Variational Treatment of Thick Interacting Inductive Irises

TULLIO E. ROZZI

Abstract—The problem of two thick interacting inductive irises in
waveguide is treated with a variational approach.

Using the appropriate Green’s functions in the continuity equa-
tions of the transverse magnetic fields yields two coupled integral
equations for the magnetic currents on the apertures. Solving one
equation by Fourier expansion and introducing in the remaining
equation, a variational expression for the driving-point admittance is
obtained. Thk is treated with a Rayleigh-Ritz procedure and matrix
methods, avoiding the explicit computation of field amplitudes.

The analysis is carried out in terms of an eigemnode expansion,
as well as in terms of an expansion ~ la Schwinger on the aperture
and the features of the two methods are contrasted.

In spite of its somewhat greater mathematical complexity, the
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latter generally provides a superior solution for a given order of the
trial field.

In both cases the solutions are very accurate, uniformly con-
vergent to their common Mlt value, and require manipulations with
small-order matrices only. The agreement with the experiment is
excellent.

1. INTRODUCTION

T
HE PROBLEM of the inductive iris in waveguide, one

of the geometrically simplest and most commonly used

configurations, admits, nonetheless, no general analyt-

ical solution. On the other hand, the variational approach to

this problem can be developed analytically to such an extent

as to yield answers that can be as accurate as prescribed and,

in the quasistatic limit, can even be cast in closed form.
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A good discussion of the variational solution of the prob-

lems of the infinitely thin iris under TE1o incidence, c)riginally

due to Schwinger, can be found in a standard textbook by

Collin [1].

This solution has been extended to the general case of

arbitrary TEno incidence by Palais [2]. The same author has IYI III

also discussed the effect of interaction between infinitely thin

irises [3]. The thick (isolated) iris is also treated in [1].

The simultaneous presence of finite thickness and inter-

action between neighboring irises has been discussed in a

previous contribution [4]. This utilizes Schwinger’s form for

the susceptance of an infinitely thin iris, parallel transmis- A
sion lines for the iris eigenmodes, and ideal transformers at

the interfaces. The transformer ratios are expressible as linear
Fig. 1. Geometry.

combinations of the amplitudes of two, independently assumed,

trial fieldsat the interfaces. Field amplitudes are then deter-

mined by searching for the stationary point of the driving-

point admittance of the even/odd-mode equivalent network.

It is well known in fluid dynamics tha~ flow occurs with-
+ 1
x d la

out turbulence at the junction of two ducts having different

cross sections when these can be mathematically related by y
//q

////////- ,

means of conformal mapping. In the boundary-value problem
///////h

posed by the iris, a somewhat analogous situation arises if one s! ~s’ I

utilizes an orthogonal set on the iris aperture introc~uced by I 1 1

Schwinger [1], [5]. These and the x derivatives of the guide Pig. 2. Half structure for even/odd excitation.

eigenmodes satisfy compatible boundary conditions on the

aperture edge, and the latter set can be expressed as a finite

expansion in terms of the first set. The transformation matrix
/
/

from the one set to the other is lower triangular and well

conditioned.

In order to take account of propagation in the iris (thick-

ness effect), it is, however, necessary to transform back to the
7
/

representation of the iris eigenmodes, i.e., in network terms,

ideal transformers must be introduced at the interfaces. The
Fig. 3, Equivalent boundary-value problem.

actual aperture eigenmodes, on the other hand, are the nat-

ural set for describing propagation on the thick iris, but their eigenmod e expansion (Section II), as well as by an expansion

boundary conditions are incompatible with those of the guide in Schwinger’s functions (Section III), and the characteristics

modes. These considerations apply to the general case of of the two solutions are investigated. In Section IV, numerical

transverse discontinuities of the aperture type. The aperture results obtained with both methods are compared with those

eigenmodes are just a choice of an orthonormal set on the obtained with the previous method and with the experiment.

aperture and as such, in general, not an optimum one, from Only TE1 o incidence will be explicitly considered. The follow-

the point of view of “bringing the wave” into the aperture. ing results can be extended to general TEnO incidence, as

The question arises, therefore, whether an expansion ~ la shown in [2] for the infinitely thin iris. The case of the capac-

Schwinger, in spite of the more complex representation associ- ative iris can be treated on parallel lines.

ated with it in the case of finite thickness, provides a more

efficient solution. II. THE INTEGRAL-EQUATION FORMULATION

The purpose of this paper is to present the complete vari- AND THE EIGENMODE EXPANSION

ational solution of the problem of thick, interacting, induc- The geometry under study is depicted in Fig. 1. Making

tive irises starting from a rigorous integral-equation f’ormula- use of the mirror symmetry with respect to the plane z = t+l,

tion. we shall split the problem into an even and odd part by locat-

This results in a pair of coupled integral equations: the ing a magnetic and an electric wall, respectively, at the plane

first one for the driving-point admittance of the even/odd- of symmetry (Fig. 2).

mode equivalent circuit and the second one relating the two We can solve the field problem separately in each region

magnetic current distributions occurring at the two interfaces of the left-half space (z= t+l) by applying a well-known field

of the iris. equivalence principle [6].

When the second equation is solved by Fourier expansion The two sides of the aperture .S at z = O can be considered

and the resulting linear relationship between the two distri- closed by an electric wall superimposed by a magnetic current

butions is introduced into the first equation, the latter can be distribution M= ixE and – M, respectively, 2 being the unit

reduced to a modified symmetric Rayleigh quotient contain- normal in the positive z direction and E the electric field at the

ing the Fourier amplitudes of only one of the distributions. aperture location. Similarly, the aperture .s” can be closed by

The stationary value of the quotient is then found by alge- an electric wall and the magnetic current distribution

braic methods avoiding the explicit calculation of modal M’= ixE’ on the left-hand side and – M’ on the right-hand

amplitudes. The analysis is carried out by means of an iris side. This equivalence is depicted in Fig. 3. The total (x-
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directed) transverse magnetic field in region 1, e.g., incident HI = H2+H2’, on S (7a)

field plus field radiated by the magnetic current atz=O, can and

be expressed as
H2+HZ’ = H3,* on S’. (7b)

Hi(r) =~$OI(X)COS~Z+j
.J

M(i) . Gl(r; z’) . dx’ Inserting in the above expressions the field expansions (l),
s

(3), (5), and (6), we have—.—

(1)
Ik!(%,o) = –j

{J
[G,(z, O; x’) + G,(x, O;a!)]iw(i) (i%’

wherelis the amplitude of the current carried by the funda-

mental mode (TEIo). The symmetry of the discontinuity in
}

+ ~ l’f’(x’) oG,’(x> O; x’) dz’ (8a)

the y direction causes only TEno modes to be excited. The

reactance dyadic in region 1, at the location z’=0, is and

D= r.
Gl(x, z; x’) = ~~1 ~.sin~r xsinn~x’”cosh I’mz. (2) ~l@’)G&t;x’)dx’-~ ~’(X’) Gj’(x, t;x’)da?

a a s s’

If theiris is symmetric, the sum is restricted to n odd. All

characteristic admittances have been normalized to that of
——

s
M’(x’). G&t;J).dx’. (8b)

the fundamental mode (I’. is real for w >1 and I’1 =j@).
s’

In region 2, the field is that radiated by the magnetic cur- This is a system of two coupled integral equations for the yet

rents — i!l and ill’ in a resonator of length t and width d. unknown functions M(x) and M’(x).

Equivalently, the total field in region 2 is the superposition From (8a) we can easily derive the following variational

of the fields present in the two semi-infinite regions t >Z > — w expression for the driving-point admittance of the one-port

and O<z<+w. [1]:

-Zj-J-{ [ (ikf(X) G1 X, O; x’)+Gz(z, O; Z’)~(X’) –~’(x) . G,’(z, O; x’)lf(d) ] . dx. dx’
2X2VXI 1

._ ._ ;h. = . (9)
(2 V)’ v ‘-”

The transverse field H2 radiated by – Ill in region 2 is

obtained by a formula analogous to (1) by setting 1= O, i.e.,

H,(x, Z) = – j
s

ill(d) . Gz($, Z; z’). dx’ (3)
s

where the appropriate Green’s function now is

G2(z, Z; X’)

cosh y~(Z — t)
(4)

sinh ymt

Similarly, the field H,’ radiated by M’ in region 2 is expressed

as

H2’(X, z) = j
s

~’(X’) . Gz’(x, Z; X’). dx’. (5)
S*

The transverse magnetic field in region 3 is given by

H3(x, Z) = j
s

ikf’(~’) . G& Z; i). dx’. (6)
SJ

All transverse magnetic fields have now been written in

terms of two unknown magnetic current distributions:

.M= .?XE located at .S and M’= 2XE’ located at ,S’ (e. g., in

terms of the electric field distributions at the interfaces). Two

integral equations for these quantities are obtained by apply-

ing the conditions of continuity of the transverse magnetic

fields at ~ and S’. These are

Separating variables and introducing the explicit form of the

Green’s functions, (8b) is rewritten as

where

dz? n.
d%(x) = –sin—x

‘m(’) =s’n;(”~%)

We shall limit our attention to the symmetric iris, since the

asymmetric case presents no new feature, and therefore we

shall take for M(x) and M’(x) an expansion in terms of the

aperture eigenmodes of odd order:

~(x) = 5 L*.(%) (ha)
m=1



ROZZI : THICK INTERACTING INDUCTIVE IRISES 85

Fig. 4. Equivalent network representation of (16),

The denominator can be written as

(:)”(:)(zpm’’mY=($)”(:)Lp”’F*l&‘1’)
After a slight manipulation, the first term in the numerator

can be written as

(): i(B + D)a (16)

M’(z) = f /JmIjJm(z). (llb)
m= 1

where

We introduce now in the right-hand side of (10) the expansion
40a

Bil = ;d ~~a 17nP<nPjm

O.(x) = -lm:, P.n+.(x) (12)
D = diag (YI, coth Yd, -is coth yd, “ . 0 ) = 7. C.S–l.

with

2m77
sin ~ (a — d)

P—mn =

‘ EY-EY ’13)

and we equate Fourier amplitudes. Some algebraic manipula-

tion yields the following linear relationship between the ampli-

tude vectors L and p:

X = (c + S-CIB’)U = TV

where

s = diag (sinh ylt,sinh ~st, o . . )

(14)

()Bi,’ = ~ ~~ 17’Pn~Pnj orB=
()

; PSP 1

(

tan @
I“ = diag B

tanh I’J
, rt

coth r31’ )

. . . .

cot pl

The series appearing in the matrix elements BJ ccmverges,

but neither uniformly everywhere nor very rapidly. Poles

occur whenever m/d = n/a, i.e., higher order iris and iris guide

modes “enter in resonance. ” This has no intrinsic physical

meaning, but is a consequence of the fact that the eigenmode

expansion is essentially not uniformly convergent at these

points.

The transformation of the series into one which converges

uniformly and more rapidly is described elsewhere [7].

The continuity equation (14) has the network interpreta-

tion of the (matrix) voltage transfer ratio of a length of trans-

mission line terminated by a shunt admittance, which is illus-

trated in Fig. 4. This is indeed the relationship between the

voltages at the location of the transformers in the equivalent

network representation of [4]. At the same time, this shows

the connection between that approach and the more general

sol ution presented here.

We go back now to expression (9) for the driving-point

admittance and compute the various constituent terms.

I Here, the tilde denotes transposition.

Similarly, the second term in the numerator of (9) becomes

; ~ ~. csch (~.f)x.u. = $D’v (17)

where

D’ = diag (yl, csch ~lt, Y3 csch y3t, . . . ) = ~s–l.

Collecting the expressions (15)- (17) we finally obtain

The matrix P*l~*l is real, symmetric, and of rank one.

The matrix U is real, symmetric, and nonsingular. The sta-

tionary value of the driving-point susceptance bo(ZO) is char-

acterized by the equation

: [bo(h)(iP*,3*lQ – iua] = o
a

If Z. = l/!rO and since U is nonsingular, (19) can be reduced to

the eigenvalue equation

(20)

Since U- ‘PwP*l is of rank one, there will be only one non-

zero eigenvalue satisfying (20). This is the sought stationary

value of the reactance.

From the invariance of the trace of U–l$’W$W itfollows

that the value of zo is given by

tr ( U–lP*IF*l) = FM U–lP*I. (21)

The usefulness of this result lies in the fact that it gives an

explicit value for the reactance, avoiding the calculation of

modal amplitudes. If required, these can easily be computed

from (20) and (14).

III. SCHWINGER’S REPRESENTATION

The aperture fields (11) have been taken as combinations

of actual aperture eigenmodes.

It is interesting to compare the solution with that ob-

tained by using the orthogonal set of functions over the aper-
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ture that was originally introduced by Schwinger [5]. For

this purpose, wetake J1(x) andl[’(x) such that

dlf(x)
— . ~(t!l(z)) =~pkcdo (22a)

d% k= 1

dM’(x)
— . F’(6(x)) = &CO Sk@ (22b)

dx k=l

where cos (m/a) =sin (mi/2a). cos 6=CX cos 0 and the nota-

tion is similar to that used in [4]. The above definitions imply

a conformal mapping of the interval O <z <u in the interval

a – d/2 <x< a +d/2, corresponding to 0<0 <r. The existence

of the mapping involves better modal matching to the guide

eigenmodes than that obtainable with the iris eigenmodes

chosen as a basis. In order to describe the propagation on the

iris, however, we shall have to go back to the latter set.

In the following, therefore, we shall need the expansions

cOs%x-%?=FAmzcOs”’23)
with

s‘T/2

A~z = (4/7r)
o Cos’e”cos%x-%d’

and

n

COS ‘L%= ~ Q., COSr~ (24)
a ‘r=l

with Q., given explicitly in the Appendix. It is worth empha-

sizing that the existence of thejinite expansion (24) stems from

the fact that the two sets cos (mr/a)x and cos %9 satisfy com-

parable boundary conditions on the iris edge. This is not the

case for the sets sin (mr/a)x and sin (mr/d). (x– (a– d/2)), so

that the expansion of one set in terms of the other one is

intrinsically injinite. This is borne out by the fact that the

transformation matrix (13) can easily become ill-conditioned.

In fact, for m/n= d/a or, in any case, if m and n are suffi-

ciently large, we have mz— (d/a)2n2 = m2 — k2 with k integer

so that

1 1
P.n” —.— .

m+km —k

This matrix is clearly related to the matrix H~k = 1/(nz+ k – 1).

However, this is the so-called “Hilbert matrix, ” which is a

well-known pathological case of ill-conditioning in numerical

analysis [8].

The relationship between (11) and (22) is found from the

identity

dM(x)
‘=~pk COSkti

dx lc=l

(25)

where A=diag ~m) and m= 1, 3, . . . , N.

In the new representation, (14) becomes

= : $,; Coth (’YJ) ~ Am,fk u,
m !+=1

+ ii $ &@niuk
n=max (i, k)

that is,

(d~AA–lD’A–lAP = –
)

~A-lDA–~A + c’ d
a a

or

~E’’=(:E+c’)’a

(26)

(27)

where D and D’ have already been defined, E and Et are

defined in (27), and

(c’),, = ~=m:(t,,: Q.tQ.j = (QA-lr’A-l~)tj. (28)

A rearrangement of this series is given in [4, eq. (5)].

From (27), the linear relationship between the iV-dimen-

sional vectors o and d is obtained:

p = .Xd. (29)

When N+ co, X+A–L and

x = 4A(c + ST–lB)A-lA = AATA–’A (30)

is the result of a similar transformation on T. As a conse-

quence of this approach, the matrix relationship between the

p and c1 vectors is more complicated than (14), involving the

numerical summation of an additional set of infinite series.

However, the series occurring in the matrix elements of C’

have convergence properties superior to those of B’. Further-

more, due to the lower-triangular form of the matrix T in the

expansion (24), the denominator in the expression analogous

to the modified Rayleigh quotient (17) reduces to a scalar

independent of p.

The network interpretation of the transformation (30) is

to introduce at the location of the discontinuity between the

guide and the iris an intermediate set of multiwinding ideal

transformers.

In terms of the new representation, the expression for the

driving-point susceptance becomes
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where ~= (1, pa, . . . )=(1, Z) and

Matrix (32) represents the half of the (matrix) susceptance of

an infinitely thin isolated iris. By partitioning Y as

f
Yll Y12

P*2 Y22
)

where YII is a number, YIZ is a (1 XN— I)-matrix, and YIZ is

a (N— 1) X (N– 1)-matrix, the quadratic form (31) can be

written:

h!) = Yll + 2 Y12& + i J7zzv.

Its stationary value qo, obtained when YIz = – fio Yzz, is

qo = Yll + Y12V0 = Yll – Y1’2 Y22–I P12 (33)

As in Section II, we have been able to obtain a compact

expression for the susceptance, avoiding the explicit compu-

tation of field amplitudes. If required, these can be readily

obtained, in fact, @= (1, – ~lt Y2z-1), and 6 follows from (29).

IV. NUMERICAL AND EXPERIMENTAL RESULTS

In order to compare the two methods discussed in Sections

II and III and to check the results against those obtained by

means of the previous approach [4], two computer programs

were developed. A waveguide cavity, defined by two identical

irises (two-element filter), was built as well. The cavity was

gold plated in order to minimize losses and the actual mea-

sured dimensions (in centimeters) were as follows:

guide width a = 1.067 + 0.0020

iris aperture cZ=O.452O+O.OO1O

iris thickness t= 0.0460 ~ 0.0020

distance between irises 1= 0.6535 ~ 0.0015.

The VSWR was computed with the three methods and mea-

sured over the range 22.5–23.5 GHz, encompassing the reso-

nance of the cavity. This occurred at 22.923 GHz.

The results are shown in Fig. 5, where the crosses are mea-

sured values.

Curve A in Fig. 5 was computed by the method previously

developed and by a modal expansion of three terms per aper-

ture; that is, four independent variables in the Ri~yleigh–

Ritz procedure. Results obtained with this method are con-

sistently in fairly good agreement with those obtained with

the more recent approach, apart from a slight systematic

deviation of the resonant frequency towards lower frequenc-

ies.

Curve B was computed with the method of Section II

(fields expressed as eigenmode expansions) and a modal devel-

opment of ten modes in the aperture (N= 2 X 10– 1 = 19).

-- A, lXeV,OUS rni+od L “Qr,@[~~
.–. B: expansion [n e]gen mode 10 modes
—C= expansion k la Schw\nger ,, ,,
xxx exper)meni

;

VSWR

t !
!

I

‘ 30
i

(i

Fig. 5. Computed and experimental VSWR for two irises,

TABLE I

RESONANT FREQUENCY (GHz)

number of e~genmode expansion Schwlnger’st F“nctl. on

terms expans=on

3

k

5.

6

~

8

9

10

11

22.9J460

22.9325

22.9255

22.921b

22.9188

22.9169

22.9156

22.9146

22.9140

22.8621

22. S873

22.8991

22.9073

22.9133

22.9767

22.9200

22.9228

22.924.5

Curve C was computed with the method of Section III

(Schwinger representation and a modal development of the

same order). The values of the resonant frequency as a func-

tion of the number of modes for both methods are given in

Table 1. It is seen that in the two methods, the limit values are

approached from opposite directions.

All waveguide modes are taken into account in the matrix

elements of the guide dyadic in terms of the orthogonal set on

the aperture. Therefore, the solution depends only upon the

order of the expansion chosen for the trial field. The computed

values of the resonant frequency sensitivity for mechanical

tolerances, expressed in megacycles per second/micrometers,

were as follows:

Af/Aa E – 0.7 Af/Ad z – 1.5

Af/Al= – 1.7 Af/At s 0.3.

Both limit values, extrapolated from Table 1, lie within the
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range accounted for by tolerances, the difference between

them being 10 MHz.

Computation times for the three cases were in the ratio

A: B: C = 20:8:3. The reduction of computing time realized

by either B or C, with respect to A, is mainly due to replacing

the search for the stationary point of a nonlinear function of

many variables with the closed-form expression (21) or (33)

for the stationary value of the driving-point admittance.

The difference of computing time between B and C, in

spite of the larger number of matrix manipulations and the

summation of two sets of series involved in the latter method,

is due to the better modal matching in Schwinger’s represen-

tation.

A few computer results confirmed the expectation that

this method becomes increasingly attractive as either the iris

thickness decreases and/or the iris-to-iris distance decreases,

since in either case the interaction of higher order waveguide

and iris modes is enhanced.

In the limit of rather thick irises, the method of Section II

appears to be competitive.

V. CONCLUSIONS

Starting from a rigorous integral-equation formulation,

the variational solution was obtained to the problem of the

interacting, thick inductive iris using an eigenmode expansion

on the aperture, as well as an expansion ~ la Schwinger.

A comparison has been carried out between the two

methods and the equivalent-network/variational approach

presented previously. A precise two-element filter was made

and tested.

Numerical results obtained with both new methods show

improved agreement with the experiment.

In spite of not offering a diagonal representation for

propagation in the iris, an expansion 5, la Schwinger appears

to give definite computational advantages, especially for thin

(interacting) irises. Moreover, the nonphysical situation of

resonance between higher order guide and iris modes does not

arise in the latter approach.

The accuracy achieved with either method is such that the

uncertainty in predicting the electrical characteristics of the

thick interacting iris has been reduced to that arising from

the effect of mechanical tolerances.

APPENDIX

RECURSIVE FORMULAS OF THE Qnk

COEFFICIENTS OF SECTION III

The coefficients Qn~ of the expansion (26)

COS ‘Lx= jj @COSke, (n, k odd)
a k= 1

with

cos’~ = a cos O = Qll cos 0
a

can be obtained by means of a convenient recursive relation-

ship derived in the following.

Since

‘l’L’irx

()
cos — = T. COS : == Tn (a Cos /j)

a a

and

Tn(x) = (4x2 – 2) T.-2(z) – T.-,(x)

we set

~ Q., COS kti
k=l

n— 2 n—4

= (4cx2 COS’ $ – 2). ~ Qn-,;k COS ke – ~ Q.+ COS kO
ic=l k=l

G CY2 ~ @-2;k-2 COS be + CY2 ? Qn-2,w.2
k=–1

n— 2 n— 4

+ 2(cz2 – 1) ~ Q.-,;k COSko – ~ Qn_.4;~ COS kO.
k= 1 k=l

Equating coefficients of cos W, we obtain the recursive for-

mula sought:

Qwn = CY2Qm-2;m-2 + CY2Qn-2;m+2 + 2 (ci2 – l) Qn-2;m

– Q.-..
with

Qrmt= 0, for m > n.

This form, containing only quantities of the order of unity, is

more suitable for computation than an explicit polynomial

form in a, involving differences of products of large numerical

coefficients and large powers of a with a <1.

A similar recursive form is easily deduced for the asym-

metric case (WZand n even and odd).
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